T.Y.B.Sc. CHEMISTRY (6 UNITS)

Choice Based Semester and Grading System

SEMESTER V

INORGANIC CHEMISTRY

COURSE CODE: USCH502

CREDITS: 02

LECTURES: 60

UNIT-I	L/Week
1. Molecular Symmetry and Chemical Bonding	
1.1Molecular Symmetry(6L)	
1.1.1 Introduction and Importance of Symmetry in Chemistry.	
1.1.2 Symmetry elements and Symmetry operations.	
1.1.3 Concept of a Point Group with illustrations using the	
following point groups :(i) $C_{\omega V}$ (ii) $D_{\omega h}$ (iii) C_{2V} (iv) C_{3v} (v) C_{2h} and (vi) D_{3h}	
1.2 Molecular Orbital Theory for heteronuclear diatomic	
molecules and polyatomic species (9L)	
1.2.1 Comparision between homonuclear and heteronuclear	
diatomic molecules.	
1.2.2. Heteronuclear diatomic molecules like CO, NO and HCl,	
appreciation of modified MO diagram for CO.	
1.2.3 Molecular orbital theory for H_3 and H_3^+ (correlation	
diagram expected).	
1.2.4. Molecular shape to molecular orbital approach in AB_2	
molecules. Application of symmetry concepts for linear and	
angular species considering σ - bonding only.	
(Examples like : i) BeH ₂ , ii) H ₂ O).	
UNIT-II	
2 SOLID STATE CHEMISTRY	
2.1 Structures of Solids (11L)	
2.2.1 Explanation of terms viz.crystal lattice, lattice point, unit cell	
and lattice constants.	
2.1.2 Closest packing of rigid spheres (hcp,ccp), packing density	
in simple cubic, bcc and fcc lattices. Relationship between	
density, radius of unit cell and lattice parameters.	

2.1.3 Stoichiometric Point defects in solids (discussion on Frenkel	
and Schottky defects expected).	
2.2 Superconductivity(4L)	
2.2.1 Discovery of superconductivity.	-
2.2.2 Explanation of terms like superconductivity, transition	
temperature, Meissner effect.	
2.2.3 Different types of super conductors viz.conventional	-
superconductors, alkali metal fullerides, high temperature	
super conductors.	
2.2.4 Brief application of superconductors.	
UNIT-III	
3.0 CHEMISTRY OF INNER TRANSITION ELEMENTS	
(15L)	
3.1 Introduction: Position in periodic table and electronic	
configuration of lanthanides and actinides.	
3.2 Chemistry of Lanthanides with reference to (i) lanthanide	
contraction and its consequences(ii) Oxidation states (iii)	
Ability to form complexes (iv) Magnetic and spectral	
properties	
3.3 :Occurrence, extraction and separation of lanthanides by (i)	
Ion Exchange method and (ii) Solvent extraction method	
(Principles and technique)	
3.4 Applications of lanthanides	
UNIT-IV	
4. SOME SELECTED TOPICS	
4.1 Chemistry of Non-aqueous Solvents(5 L)	
4.1.1Classification of solvents and importance of non-aqueous	
solvents.	
4.1.2 Characteristics and study of liquid ammonia, dinitrogen tetra	
oxide as non-aqueous solvents with respect to : (i) acid-base	
reactions and (ii) redox reactions.	
4.2 Comparative Chemistry of Group 16(5L)	
4.2.1 Electronic configurations, trends in physical properties,	
allotropy	
4.2.2 Manufacture of sulphuric acid by Contact process.	
4.3 Comparative Chemistry of Group 17 (5L)	
4.3.1Electronic configuration, General characteristics, anamolous	
properties of fluorine, comparative study of acidity of	
oxyacids of chlorine w.r.t acidity, oxidising properties and	
structures(on the basis of VSEPR theory)	
4.3.2 Chemistry of interhalogens with reference to preparations,	
properties and structures (on the basis of VSEPR theory).	

REFERENCES

SEM-V

Unit-I

- 1. Per Jensen and Philip R. Bunker, Fundamentals of Molecular Symmetry, Series in Chemical Physics, Taylor & Francis Group
- 2. J. S. Ogden, Introduction to Molecular Symmetry, Oxford University Press
- 3. Derek W. Smith, Molecular orbital theory in inorganic chemistry Publisher: Cambridge University Press
- C. J. Ballhausen, Carl Johan Ballhausen, Harry B. Gray Molecular Orbital Theory: An Introductory Lecture Note and Reprint Volume Frontiers in chemistry Publisher W.A. Benjamin, 1965
- 5. Jack Barrett and Mounir A Malati, Fundamentals of Inorganic Chemistry, Affiliated East west Press Pvt. Ltd., New Delhi.
- 6. Satya Prakash, G.D.Tuli, R.D. Madan , , Advanced Inorganic Chemistry.S. Chand & Co Ltd

Unit-II

- 1. Lesley E. Smart, Elaine A. Moore Solid State Chemistry: An Introduction, 2nd Edition CRC Press,
- 2. C. N. R. Rao Advances in Solid State Chemistry
- 3. R.G. Sharma Superconductivity: Basics and Applications to Magnets
- 4. Michael Tinkham ,Introduction to Superconductivity: Vol I (Dover Books on Physics)
- 5. R. Gopalan, Inorganic Chemistry for Undergraduates, Universities Press India.
- 6. Richard Harwood, Chemistry, Cambridge University Press,
- 7. Satya Prakash, G.D.Tuli, R.D. Madan , , Advanced Inorganic Chemistry.S. Chand & Co Ltd .

Unit-III

- 1. Cotton, Wilkinson, Murillo and Bochmann, Advanced Inorganic Chemistry, 6th Edition.
- 2. Greenwood, N.N. and Earnshaw, Chemistry of the Elements, Butterworth Heinemann. 1997.
- 3. Huheey, J.E., Inorganic Chemistry, Prentice Hall, 1993.
- 4. G. Singh, Chemistry of Lanthanides and Actinides, Discovery Publishing House
- 5. Simon Cotton, Lanthanide and Actinide Chemistry Publisher: Wiley-Blackwell

Unit-IV

- 1. B. H. Mahan, University Chemistry, Narosa publishing.
- 2. R. Gopalan, Inorganic Chemistry for Undergraduates, Universities Press India.

- 3. J. D. Lee, Concise Inorganic Chemistry, 4thEdn., ELBS,
- 4. D. F. Shriver and P. W. Atkins, Inorganic chemistry, 3rd edition, Oxford University Press
- Cotton, Wilkinson, Murillo and Bochmann, Advanced Inorganic Chemistry, 6th Edition.
- 6. Gary Wulfsberg, Inorganic chemistry, Viva Books Pvt, Ltd. (2002).
- 7. Richard Harwood, Chemistry, chapter 10 Industrial inorganic chemistry
- 8. Greenwood, N.N. and Earnshaw, Chemistry of the Elements, Butterworth Heinemann. 1997.
- 9. Huheey, J.E., Inorganic Chemistry, Prentice Hall, 1993
- 10. Satya Prakash, G.D.Tuli, R.D. Madan, Advanced Inorganic Chemistry.S. Chand & Co Ltd 2004

Practicals

SEMESTER V

INORGANIC CHEMISTRY

COURSE CODE: USCHP05

CREDITS: 02

Course USCH502: Inorganic Practicals (60L)

I. Inorganic preparations

- 1. Preparation of Potassium diaquobis- (oxalato)cuprate (II)
- 2. Preparation of Ferrous ethylene diammonium sulphate.
- 3. Preparation of bisacetylacetonatocopper(II)

II. Determination of percentage purity of the given water soluble salt and qualitative detection w.r.t added cation and/or anion (qualitative analysis only by wet tests).

(Any three salts of transition metal ions)

Reference Books (practicals)

1. Vogel Textbook of Quantitative Chemical Analysis G.H. Jeffery, J. Basset.

- Advanced experiments in Inorganic Chemistry., G. N. Mukherjee., 1st Edn., 2010., U.N.Dhur & Sons Pvt Ltd.
- 3. Vogel's. Textbook of. Macro and Semimicro qualitative inorganic analysis. Fifth edition.

SEMESTER VI

INORGANIC CHEMISTRY

COURSE CODE: USCH602

CREDITS: 02

LECTURES: 60

COURSE CODE	CREDITS		
USCH602	(60 Lectures)		
(Numericals and word problems are expected)			
UNIT-I		L/week	
1.Theories of the metal-ligand bond (I) (15L)			
1.1 Limitations of Valence Bond Theory.			
1.2 Crystal Field Theory and effect of crystal field on central metal			
valence orbitals in various geometries from linear to			
octahedral(from coordination number 2 to coordination number			
6)			
1.3 Splitting of <i>d</i> orbitals in octahedral, square planar and tetrahedral			
crystal fields.			
1.4 Distortions from the octahedral geometry : (i) effect of ligand			
field and (ii) Jahn-Teller distortions.			
1.5 Crystal field splitting parameters Δ ; its calculation and factors			
affecting it in octahedral complexes, Spectrochemical series.			
1.6 Crystal field stabilization energy(CFSE), calculation of CFSE for			
octahedral complexes with d ⁰ to d ¹⁰ metal ion configurations.			
1.7 Consequences of crystal field splitting on various properties such			
as ionic radii, hydration energy and enthalpies of formation of			
metal complexes of the first transition series.			
1.8 Limitations of CFT : Evidences for covalence in metal complexes			
(i) intensities of d-d transitions, (ii) ESR spectrum of $[IrCl_6]^{2-}$ (iii)			
Nephelauxetic effect.			
UNIT-II			
2.Theories of the metal-ligand bond (II)			
2.1 Molecular orbital Theory for coordination compounds. (4L)			

2.1.1 Identification of the central metal orbitals an	d their symmetry	
suitable for formation of σ bonds with ligand orbitals.		
2.1.2 Construction of ligand group orbitals.		
2.1.3 Construction of σ -molecular orbitals for an N	ML ₆ complex.	
2.1.4 Effect of π -bonding on complexes .		
2.1.5 Examples like $[FeF_6]^{-4}$, $[Fe(CN)_6]^{-4}$, $[FeF_6]^{-3}$,	$[Fe(CN)_{\ell}]^{-3}$ $[CoE_{\ell}]^{-1}$	
$\int \frac{1}{3} \left[Co(NH_3)_6 \right]^{+3}$		
2.2 Stability of Metal-Complexes	(4L)	
2.2.1 Thermodynamic and kinetic perspectives of	· /	
with examples.	-	
2.2.2 Stability constants: stepwise and overall stab	oility constants and	
their interrelationship.		
2.2.3 Factors affecting thermodynamic stability.		
2.3 Reactivity of metal complexes.	(4L)	
2.3.1 Comparison between Inorganic and organic	reactions.	
2.3.2 Types of reactions in metal complexes.		
2.3.3 Inert and labile complexes : correlation betw	veen electronic	
configurations and lability of complexes.		
2.3.4 Ligand substitution reactions : Associative a	nd Dissociative	
mechanisms.		
2.2.5 Acid hydrolysis, base hydrolysis and anation	reactions.	
2.4 Electronic Spectra.	(3L)	
2.4.1Origin of electronic spectra		
2.4.1Origin of electronic spectra2.4.2 Types of electronic transitions in coordination	on compounds:	
 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination intra- ligand, Charge transfer and intra-metal 	on compounds:	
 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination intra- ligand, Charge transfer and intra-metal 2.4.3 Selection rules for electronic transitions. 	on compounds: l transitions.	
 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination intra- ligand, Charge transfer and intra-metal 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro 	on compounds: l transitions.	
 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination intra-ligand, Charge transfer and intra-metal 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro Term symbols for transition metal ions, rule 	on compounds: l transitions.	
 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination intra- ligand, Charge transfer and intra-metal 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro Term symbols for transition metal ions, rule of ground state term. 	on compounds: l transitions. o states, Terms and es for determination	
 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination intra-ligand, Charge transfer and intra-metal 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micro-Term symbols for transition metal ions, rule of ground state term. 2.4.5 Determination of Terms for p² and d¹ electronic 	on compounds: l transitions. o states, Terms and es for determination	
 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination intra- ligand, Charge transfer and intra-metal 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micror Term symbols for transition metal ions, rule of ground state term. 2.4.5 Determination of Terms for p² and d¹ electron UNIT-III 	on compounds: l transitions. o states, Terms and es for determination nic configurations.	
 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination intra- ligand, Charge transfer and intra-metal 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micror Term symbols for transition metal ions, rule of ground state term. 2.4.5 Determination of Terms for p² and d¹ electron UNIT-III 3 ORGANOMETALLIC CHEMISTRY 	on compounds: l transitions. o states, Terms and es for determination nic configurations. (15L)	
 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination intra-ligand, Charge transfer and intra-metal 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micror Term symbols for transition metal ions, rule of ground state term. 2.4.5 Determination of Terms for p² and d¹ electronic UNIT-III 3 ORGANOMETALLIC CHEMISTRY 3.1 Organometallic Compounds of main group 	on compounds: l transitions. o states, Terms and es for determination nic configurations. (15L) o metal (6L)	
 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination intra- ligand, Charge transfer and intra-metal 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micror Term symbols for transition metal ions, rule of ground state term. 2.4.5 Determination of Terms for p² and d¹ electron UNIT-III 3 ORGANOMETALLIC CHEMISTRY 3.1 Organometallic Compounds of main group 3.1.1General characteristics of various types of organization. 	on compounds: l transitions. o states, Terms and es for determination nic configurations. (15L) o metal (6L) ganometallic	
 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination intra-ligand, Charge transfer and intra-metal 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micror Term symbols for transition metal ions, rule of ground state term. 2.4.5 Determination of Terms for p² and d¹ electron UNIT-III 3 ORGANOMETALLIC CHEMISTRY 3.1 Organometallic Compounds of main group 3.1.1General characteristics of various types of orgonomy compounds, viz.ionic, σ-bonded and electronic 	on compounds: l transitions. o states, Terms and es for determination nic configurations. (15L) o metal (6L) ganometallic	
 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination intra-ligand, Charge transfer and intra-metal 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micror Term symbols for transition metal ions, rule of ground state term. 2.4.5 Determination of Terms for p² and d¹ electron UNIT-III 3 ORGANOMETALLIC CHEMISTRY 3.1 Organometallic Compounds of main group 3.1.1General characteristics of various types of orgonomounds, viz.ionic, σ-bonded and electron compounds. 	on compounds: l transitions. o states, Terms and es for determination nic configurations. (15L) o metal (6L) ganometallic on deficient	
 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination intra-ligand, Charge transfer and intra-metal 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micror Term symbols for transition metal ions, rule of ground state term. 2.4.5 Determination of Terms for p² and d¹ electron UNIT-III 3 ORGANOMETALLIC CHEMISTRY 3.1 Organometallic Compounds of main group 3.1.1General characteristics of various types of orgonometal. 3.1.2 General synthetic methods of organometallic 	on compounds: l transitions. o states, Terms and es for determination nic configurations. (15L) o metal (6L) ganometallic on deficient	
 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination intra- ligand, Charge transfer and intra-metal 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micror Term symbols for transition metal ions, rule of ground state term. 2.4.5 Determination of Terms for p² and d¹ electron UNIT-III 3 ORGANOMETALLIC CHEMISTRY 3.1 Organometallic Compounds of main group 3.1.1General characteristics of various types of orgonomounds, viz.ionic, σ-bonded and electron compounds. 3.1.2 General synthetic methods of organometallic Oxidative-addition, (ii)Metal-metal 	on compounds: l transitions. o states, Terms and es for determination nic configurations. (15L) o metal (6L) ganometallic on deficient c compounds : (i)	
 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination intra-ligand, Charge transfer and intra-metal 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micror Term symbols for transition metal ions, rule of ground state term. 2.4.5 Determination of Terms for p² and d¹ electron UNIT-III 3 ORGANOMETALLIC CHEMISTRY 3.1 Organometallic Compounds of main group 3.1.1General characteristics of various types of orgonomounds, viz.ionic, σ-bonded and electron compounds. 3.1.2 General synthetic methods of organometallic Oxidative-addition, (ii)Metal-metal exchange(transmetallation), (iii) Carbanion- 	on compounds: l transitions. o states, Terms and es for determination nic configurations. (15L) o metal (6L) ganometallic on deficient c compounds : (i) -halide exchange,	
 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination intra-ligand, Charge transfer and intra-metal 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micror Term symbols for transition metal ions, rule of ground state term. 2.4.5 Determination of Terms for p² and d¹ electron UNIT-III 3 ORGANOMETALLIC CHEMISTRY 3.1 Organometallic Compounds of main group 3.1.1General characteristics of various types of orgonomy compounds, viz.ionic, σ-bonded and electron compounds. 3.1.2 General synthetic methods of organometallic Oxidative-addition, (ii)Metal-metal exchange(transmetallation), (iii) Carbanion-(iv) Metal-hydrogen exchange(metallation) 	on compounds: l transitions. o states, Terms and es for determination nic configurations. (15L) o metal (6L) ganometallic on deficient c compounds : (i) -halide exchange,	
 2.4.1Origin of electronic spectra 2.4.2 Types of electronic transitions in coordination intra-ligand, Charge transfer and intra-metal 2.4.3 Selection rules for electronic transitions. 2.4.4 Electronic configuration and electronic micror Term symbols for transition metal ions, rule of ground state term. 2.4.5 Determination of Terms for p² and d¹ electron UNIT-III 3 ORGANOMETALLIC CHEMISTRY 3.1 Organometallic Compounds of main group 3.1.1General characteristics of various types of orgonometal compounds, viz.ionic, σ-bonded and electron compounds. 3.1.2 General synthetic methods of organometallic Oxidative-addition, (ii)Metal-metal exchange(transmetallation), (iii) Carbanion- 	on compounds: l transitions. o states, Terms and es for determination nic configurations. (15L) o metal (6L) ganometallic on deficient c compounds : (i) -halide exchange, and (v) Methylene-	

(i) Reactions with oxygen and halogens,	•
arylation reactions (iii) Reactions with p	
Redistribution reactions and (v) Comple	ex formation reactions.
3.2 Metallocenes	(5L)
Introduction, Ferrocene : Synthesis, prop	perties, structure and
bonding on the basis of VBT.	
3.3 Catalysis	(4L)
3.3.1 Comparison between homogeneous and	heterogeneous
catalysis	
3.3.2 Basic steps involved in homogeneous ca	talysis
3.3.3 Mechanism of Wilkinson's catalyst in hy	drogenation of
alkenes.	
UNIT-IV	
4 SOME SELECTED TOPICS	(15L)
4.1 Metallurgy	(7L)
4.1.1 Types of metallurgies,	
4.1.2 General steps of metallurgy; Concentration	on of ore,
calcinations, roasting, reduction and refir	ning.
4.1.3 Metallurgy of copper: occurrence, physi	cochemical principles,
Extraction of copper from pyrites& refir	ning by electrolysis.
4.2 Chemistry of Group 18	(5L)
4.2.1 Historical perspectives	
4.2.2 General characteristics and trends in phys	sical and chemical
properties	
4.2.3 Isolation of noble gases	
4.2.4 Compounds of Xenon (oxides and fluoric	des) with respect to
preparation and structure (VSEPR)	
4.2.5 Uses of noble gases	
4.3 Introduction to Bioinorganic Chemistry.	. (3L)
4.3.1Essential and non essential elements in bio	
4.3.2 Biological importance of metal ions such	
and Cu^{+2} (Role of Na ⁺ and K ⁺ w.r.t ion pu	
`` `	

References.

Unit-I:

- 1. Geoffrey A. Lawrance Introduction to Coordination Chemistry John Wiley & Sons.
- 2. R. K. Sharma Text Book of Coordination Chemistry Discovery Publishing House
- 3. R. Gopalan , V. Ramalingam Concise Coordination Chemistry , Vikas Publishing House;
- 4. Shukla P R, Advance Coordination Chemistry, Himalaya Publishing House
- 5. Glen E. Rodgers, Descriptive Inorganic, Coordination, and Solid-State Chemistry Publisher: Thomson Brooks/Cole

Unit-II:

- 1. Ramesh Kapoor and R.S. Chopra, Inorganic Chemistry, R. Chand publishers,
- 2. Basolo, F, and Pearson, R.C., Mechanisms of Inorganic Chemistry, John Wiley & Sons, NY,
- 3. Twigg ,Mechanisms of Inorganic and Organometallic Reactions Publisher: Springer
- 4 R.K. Sharma Inorganic Reaction Mechanisms Discovery Publishing House
- 5 M. L. Tobe Inorganic Reaction Mechanisms Publisher Nelson, 1972

Unit-III:

- 1 Cotton, Wilkinson, Murillo and Bochmann, Advanced **Inorganic Chemistry**, 6th Edition.
- 2 H.W. Porterfield, Inorganic Chemistry, Second Edition, Academic Press, 2005
- 3 Purecell, K.F. and Kotz, J.C., Inorganic Chemistry W.B. Saunders Co. 1977.
- 4 Robert H. Crabtree ,The Organometallic Chemistry of the Transition Metals, Publication by John Wiley & Sons
- 5 B D Gupta & Anil J Elias Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University press
- 6 Ram Charan Mehrotra, Organometallic Chemistry: A Unified Approach, New Age International.

Unit-IV

- 1 R. Gopalan, Inorganic Chemistry for Undergraduates, Universities Press India.
- 2 D. F. Shriver and P. W. Atkins, Inorganic chemistry, 3rd edition, Oxford University Press
- 3 Cotton, Wilkinson, Murillo and Bochmann, Advanced Inorganic Chemistry, 6th Edition.
- 4 Jack Barrett and Mounir A Malati, Fundamentals of Inorganic Chemistry, Affiliated East west Press Pvt. Ltd., New Delhi.
- 5 R.Gopalan, Chemistry for undergraduates. Chapter 18. Principles of Metallurgy.(567-591)
- 6 Puri ,Sharma Kalia Inorganic chemistry. Chapter 10, Metals and metallurgy.(328-339)

- 7 Greenwood, N.N. and Earnshaw, Chemistry of the Elements, Butterworth Heinemann. 1997.
- 8 Huheey, J.E., Inorganic Chemistry, Prentice Hall, 1993.
- 9 Lippard, S.J. & Berg, J.M. Principles of Bioinorganic Chemistry Panima Publishing Company 1994.
- 10 Satya Prakash, G.D.Tuli, R.D. Madan , , Advanced Inorganic Chemistry.S. Chand & Co Ltd

PRACTICALS

SEMESTER VI

INORGANIC CHEMISTRY

COURSE CODE: USCHP06

CREDITS: 02

I. Inorganic preparations

- 1. Preparation of Tris(acetylacetonato) iron(III)
- 2. Green synthesis of bis(dimethylglyoximato) nickel(II) complex using nickel carbonate and sodium salt of dmg.
- 3. Preparation of potassium trioxalato aluminate (III)
- II. Determination of percentage purity of the given water soluble salt and qualitative detection w.r.t added cation and/or anion (qualitative analysis only by wet tests).

(Any three salts of main group metal ions)

Reference Books (practicals)

- 4. Vogel Textbook of Quantitative Chemical Analysis G.H. Jeffery, J. Basset.
- Advanced experiments in Inorganic Chemistry., G. N. Mukherjee., 1st Edn., 2010., U.N.Dhur & Sons Pvt Ltd.
- 6. Vogel's. Textbook of. Macro and Semimicro qualitative inorganic analysis. Fifth edition.